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ABSTRACT

The purpose of this study was to investigate the interaction of plane

elastic waves with a thin, hollow, cylindrical shell embedded in an elastic

medium.

The cylindrical shell is considered to be elastic, isotropic, homo-

geneous, and of infinite length. It is surrounded by an elastic, isotropic,

and homogeneous medium whose motions conform to the ordinary theory of elas-

ticity. A plane stress wave, either dilatational or shear, with a step varia-

tion in time, whose wave front travels in a direction perpendicular to the

cylinder axis, envelops the shell, Later, a Duhamel integral is used to study

other wave shapes for the incident stress.

The response of the shell is studied by expressing the two components

of displacement, radial and tangential, in terms of Fourier series, each term

of which is called a mode. The equations of motion of the shell in vacuo

are derived from expressions giving the strain and kinetic energies due to

generalized external forces. Forces on the shell result from the stresses in

the medium at the boundary. Stresses in the medium are taken to be the sum

of the stresses due to the incoming stress wave expressed in terms of Fourier

series whose coefficients are known, and those due to the reflected and dif-

fracted effects expressed in terms of a pair of displacement potentials rep-

resenting waves diverging from the axis of the shell.

The equations to be solved consist of two pairs of coupled integro-

differential equations in the generalized coordinates of the shell and the

displacement potentials. By use of a digital computer they are solved mode-

wise by a step-by-step iterative integration technique known as the Newmark

Beta Method, with which values for the potential functions, and the acceler-



ations, velocities, and displacements of the shell are determined. Stresses

in the shell are found from the displacements, and the values of the potential

functions permit determination of stresses for any point in the medium.

Although the equations are written to include an infinite r,mber

of modes, only the first three modes are considered in detail. The computed

solution is compared with values obtained from a series expansion of the

equations, which is valid for short times, and with the static solution based

on the theory of elasticity to which the general solution should approach

asymptotically. In addition, the results of two particular problems are

compared with results given in another study.

Numerical solutions are obtained to determine the effect of the

several parameters which describe the relative physical properties of the

shell and medium. Results are presented in tabular and graphical form.
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Ii CHAPTER I

INTRODUCTION

Ii 1.1 General Remarks

The problem of designing underground protective structures to

11 resist the effects of nuclear weapons has become increasingly important in

recent years with the development of modern weapons whose destructive capacity

is overwhelming. Engineers in this field are hampered to a great extent by a

lack of theoretical information on how structures in media such as soil or

rock behave when subjected to dynamic loads. Even for static loads alone,

much of the design practice today is of a semi-empirical nature.

When a nuclear explosion occurs, stress waves are transmitted

through the air and ground. How are they transmitted and how are they modified

by the presence of a structure embedded in the medium? How does the structure

respond?

The purpose of this report is to study one aspect of the problem,

V the interaction between the medium and structure.

1.2 Statement of Problem

The problem considered here consists of analyzing the elastic

response of a hollow cylindrical shell (tunnel lining) embedded in an elastic

medium when subjected to an incident plane stress wave traveling in a direction

perpendicular to the axis of the shell. Some questions with which this problefl.

may be associated are: Do tunnel linings in contact with rock afford a measure

of protection significantly higher than an unlined opening? What magnitude

and time variation of displacement, velocity, and acceleration would equipment

mounted within such a structure be subjected to? How are stress waves within
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the medium modified in the vicinity of the shell? This study was conducted

in an attempt to find some qualitative and quantitative answers to these

questions within the limitations imposed by the assumptions noted below.

1.3 Basic Assumptions

The cylindrical shell is considered to be of infinite length, and

is embedded in an elastic medium of infinite extent in all directions. A

plane stress wave whose front travels in a direction perpendicular to the

cylinder axis envelops the shell. Strains parallel to the axis in both the

medium and shell are assumed to vanish; thus, since each cross section of the

shell is exactly similar to every other, the problem is reduced to one of

plane strain.

In the mathematical development of the problem certain basic

assumptions were made, the most important of which are given here with a few

explanatory remarks:

(1) The medium is considered to be homogeneous, isotropic, and

linearly elastic. This implies that the ordinary theory of stress wave

propagation applies. In view of the non-homogeneous, non-isotropic, and

non-elastic characteristics of most materials encountered in nature, this

is a severe limitation; however, current theories of stress propagation

through such media have not advanced to the stage where this limitation can

be readily overcome. In the case of some rocks, though, this assumption

may be Justified.

(2) The material in the shell is also considered to be homogeneous,

isotropic, and linearly elastic. Generally speaking, this assumption is valid

for values of stress below the so-callel proportional limit of materials

commonly used. In addition, the thickness of the shell relative to its radius
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Sis assumed small; this permits expression of all stress components of the

shell in terms of a function which describes the deflection of its middle

surface. This deflection must satisfy a linear partial differential equation

with the appropriate boundary conditions.

(3) The incident stress wave considered is either a plane dilata-

tional or a plane distortional (shear) wave. Under actual conditions, both

waves are propagated with the shear lagging the dilatational wave. The

combined effect for elastic conditions may be determined through the principle

of superposition.

(4) The radial and tangential particle velocities of the medium

at the boundary are equal to that of the shell. This is the continuity

relation insuring that the shell and the medium are in contact with no

relative slip occurring at the boundary.

(5) Any additional mass within the shell is assumed to be dis-

tributed symmetrically about the axis. The significance of this assumption

is found in the development of the equations of motion to account for any

additional mass located within the shell.
t.

Other assumptions a re presented in the formal development of the

mathematical expressions used to describe the behavior of shell and medium.

1.4 Method of Approach

The two components of shell displacement, radial and tangential,

are written in terms of Fourier series from which expressions giving the

strain energy and kinetic energy of the shell in vacuo are derived. The

equations of motion are deiived from Lagrange's equations in terms of the

displacement functions and forces acting on the shell. Forces on the shell

result from the stresses in the medium at the boundary. Stresses in the
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medium are taken to be the sum of the stresses due to the incoming stress wave

expressed in terms of Fourier series whose coefficients are known, and those

due to the reflected and diffracted effects expressed in terms of a pair of

displacement potentials representing waves diverging from the axis of the

shell. The form of these potentials as derived by Lamb (4), is in terms of

sine and cosine series, the nature and treatment of which has been studied

by Paul (6).

The equations of motion, described as a pair of coupled integro-

differential equations, are solved modewise using a numerical technique

known as the Newmark Beta Method (5) which permits determination of the

coefficients of the potentials and values of acceleration, velocity, and

displacement of the shell.

The solution obtained is compared with values obtained from a series

expansion of the equations, which is valid for short times, and with the static

solution based on the theory of elasticity which the machine solution should

approach asymptotically.

1.5 Previous Work

The problem stated above has been the subject of a recent report

by Baron (1), whose analysis consists of first solving for the displacements

caused at the boundary of an unlined cylindrical cavity subjected to a plane

stress wave. This is done through an integral transform approach, the solu-

tion of the transformed equations being expressed using Hankel functions.

The evaluation of the inverse transform is accomplished only with great

computational effort. Values of displacements obtained are then used as

influence coefficients in determining the displacements of the shell.

* Numbers in parenthesis refer to the corresponding entry in the Bibliography.
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Solutions obtained for two different sets of parameters by Baron are compared

in Section 4.6 with results obtained by the method of solution outlined in

this report.

fl The study by Paul (6) consisted of analyzing the effect of a plane

stress wave incident on an unlined cylindrical cavity in an elastic medium.

The reflected and diffracted waves are described in terms of displacement

potentials which represent outgoing shear and dilatational waves. A method

was developed for determining values of these potentials, and a similar

method is used in this report.

1.6 Notation

Notation is defined throughout the text where it first appears;

however, the following list summarizes the main uses of certain symbols. In

discussions of special topics other meanings may be ascribed to the symbols,

at which time they will be redefined.

A = Area of cross section of the shell, per unit length.

An, Bn, Cn = Coefficients of Fourier series for stresses in the
medium.

An Bn Cn  = Coefficients of Fourier series for total stressesin the medium.

AM M m = Weighting factors.

an, bn  = Generalized coordinates for the displacements ofthe medium at the boundary.

ans, bns = Generalized coordinates for displacements of the
shell.

cl, c2  = Velocities of wave propagation, dilatational and
shear, respectively.

d= Distance from neutral axis of shell to its outermost
fiber.
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E, 3 = Moduli of elasticity for the medium and shell,
respectively. Bar over the symbol refers to the
plane strain modulus.

e = Volumetric strain.

F, G = Generalized coordinates of the displacement
potentials.

I = Moment of inertia of the shell, per unit length.

k = Parameter which relates to the shape of a time
H1 dependent stress wave.

kr = R/r, ratio of radii.

H kc = C Cl, ratio of velocities.

m = Mass of the shell per unit surface area.

ml = Additional mass within the shell.

n = Mode number.

Qn = Generalized forces.

R = Radius of the shell.

R -m Qm = Multiplying factors.

r, 6 = Polar coordinates.

T = Kinetic energy of the shell.

T' = Kinetic energy of additional mass within the shell.

t = Thickness of the shell; also, time.

U = Strain energy of the shell.

u = Displacement vector.

u, v = Components of the displacement vector in the radial
and tangential directions, respectively.

us, vs  = Radial and tangential displacement components of
the shell.

ux, uy = Components of the displacement vector in the x and y
directions, respectively.

x, y, z = Rectangular coordinates.



aE
an s non-dimensionalized radial component of

n R n Rp displacement.

b E
sn s non-dimensionalized tangential component

A n R ap of displacement.

ex £ = Strains along the x and y axes, respectively.

68  = Circumferential strain.

= A variable of integration.

E
S

TIE =- , a parameter.

A= , a parameter.

II 1 - , a parameter.
RV t

t= , a parameter.

Ps

n= - , a parameter.
P p

=(l+v)(i-2) a parameter.= (l-v)

9, r = Polar coordinates.

al = Position angle of the incident wave.

k = Curvature of the shell.

, = Lame' constants.

v = Poisson's ratio.

V -1-vV

tl' t2 = Arguments of the functions F and G, respectively.

p = Mass density of the medium.

PS = Mass density of the shell.

a x a y = Normal components of stress parallel to the
x and y axis, respectively.

a X= Shearing stress component.
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0 rr = Radial and tangential normal stresses in polar
coordinates. Additional subscripts s and m,
when used, refer to the shell and medium.

OrQ = Shearing stress in polar coordinates.

asb = Bending stress in the shell.

= Maximum stress in the shell.smax

ap = Amplitude of incident dilatational wave.

a = Amplitude of incident shear wave.

T Non-dimensionalized time in the case of the

ii incident dilatational wave.

i "= Non-dimensionalized time in the case of the
incident shear wave.

S, 4= Displacement potentials, dilatational and shear,
respectively.



9

CHAPTER II

BMSIC EJATIONS

2.1 j tio.s for the Medium

The differential equation of motion of a particle in a homogeneous,

isotropic, and linearly-elastic medium in terms of its displacement vector

is given by Kols01r (3) in the form

+,. 4i 'x (t x U) - P u (2-1))t

where X and 4 are the Lame' constants, and p is the density of the medium. The

vector Z may be expressed as the sum of two displacements, the graient of

a scalar potential and the curl of a vector potential

U = 5 T + x (2-2)

Here q is a potential giving rise to an irrotational displacement and i a

potential leading to an equivoluminal displacement.

If the wave equations (2-5) are satisfied and U expressed as in

(2-2), the equations of motion (2-1) are automatically satisfied.

2 c t2

c2 - 2
C2

where the velocities of wave propagation are

cl

C2  (2-4i)

for the dilatational and shear waves, respectively.
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H Since the problem is essentially a two-dimensional one wherein only the

rotation about the cylinder axis is considered, the expression for the

propagation of shear waves can be written in terms of a scalar potential

function

2 162
2 21 with z (2-a)

~c 2

c and f are functions of x, y, and t. The components of the displacement

vector u can be expressed as

U = + (2-5)

IIu
B Stress components are

! ax = Xe + 2 Lxxx x

axy = 1T1y (2-6)

a = Xe + 24E
yy y

where e represents volumetric strain, e x and e strain along the x and y axis

respectively, and T the shearing strain. The strain components for small

displacement are

C3u
C x  'R x-

C y -- (2-6a)

In terms of the potential functions, the equations for the stress components

become
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2 2 2
a Li + 61) (2-7)

!i (62( +  21+ 2 =2 2 t

Il y ax C~ 6y2 +

SDIn polar coordinates
2 r+ 1 (+ 2

7r

and the w..ve equaions expressed in polar coordinates are

o r rr 2  692 2 c 22-10

H ~r ~6 ~ ~t(2-8)

2 + + " 2 1c2

2 r2
ar r 66 c 2c

HDisplacements in polar coordinates become

I.! u~ +~~(2-9)

where u and v represent radial and tangential components of displacement,

respectively.

Stress components may be written as

~rr A 4

r r r r 24 r 2 r 2602  r orj

62(p + * 6
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where a rr, ar, ao9, represent respectively the radial, shear and circum-

II ferential (hoop) stresses in the medium.

In the following development of the equations, the incoming wave,

considered a step function of time, is either a dilatational or shear wave.

The step wave was chosen as a convenient form from which, through the principle

of superposition using Duhamel's integral, the effects of any time dependent

wave may be approximated. It is shown by Kolsky (3) that for either the

incoming dilatational or shear wave, the reflected wave from a plane body must

rI have both dilatational and shear components in order to satisfy boundary con-

nf ditions. The same holds in the present case.

2.11 Dilatational Wave

The orientation of the incoming dilatational (compressional) wave

with respect to the spatial coordinates and time are shown in Fig. 1. Owing

to symmetry about the x axis, the radial stress, hoop stress, and the radial

component of displacement are even functions of 6, while the shear stress and

tangential component of displacement are odd functions of 0.

VIn the expressions previously given, the dilatational potential may

now be separated into two parts

P = (Pin + 9out

where

in p ^4 (x+clt)

represents the potential of the incoming step wave, and %pout represents the

potential of the outgoing dilatational wave.

The displacement and velocity of a particle behind the plane wave

front can be derived from the potential of the incoming wave, with notation

defined in Fig. 1
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Ux -a (x+clt)

x PC1
x pc1

ii The velocities in polar coordinates become

Pl 
(2-12)

a
PC 1o sin 

The radial and tangential displacements at the boundary r = R due to the

incoming plane stress wave are expanded in Fourier series as a function of

ii time as

Iiu(R,t,Q) = 7 a n(R,t) Cos n
n=O

00 (2 -13)

v(R,t,Q) = x bn(Rt) sin no

i j n=l

and the velocities as

(R,t,x) = Z an(R't) cos nO

n=O

(2-14)

'(Rtn) = Z n(Rt) sin nO

n=1

The Fourier coefficients are determined as a function of 9l, a measure of the

degree of envelopment of the shell by the incoming stress wave (Fig. 1), by

evaluation of the integrals



II 14

Ip=- -- cos e cos ne de[an xPC I

1 0

-- f sin e sin nQ de
n xpc 1

11 The indicated integrations are performed using the orthogonality properties

Hl of the sine and cosine functions to get the following result

sin e1  n= 0

a sin2eI
= P - e + 1 n=l

n(in) PC 1  1 2

I sin(n-l)e1  sin(n+l)e1

n-1 n+l n=2, 3, ...

(2-15)

sin 2e1

1 2 n=l

n(in ) = C gC 1  sin(n-l)61  sin(n+l)eI
n-i n+l n 2, 3,

The subscript (in) has been added to designate the coefficients due to the

incident wave. e is a time dependent variable which varies from 0 to x

during the transit of the incoming wave across the cavity, after which it

becomes a constant equal to x.

The stresses in the medium behind the wave front are as shown in

Fig. 1, where v, a ratio relating the stress in a direction perpendicular to

the direction of wave propagation, is derived from the assumption that there

is no strain behind the wave front in the direction parallel to the wave front.

It is related to Poisson's ratio, v, of the medium in the following way

* The bar over the symbol does not indicate a vector quantity.
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Vf=:* (2-16)

II The stresses behind the wave front are in polar coordinates

a1 err = -ap(Cos20 + sin 2)

fl r ap ('-V) sin 20

age = - (sin 0 + Vcos 9) (2-17)

Stresses in the medium as a function of radius and time are now

1 expressed in terms of Fourier sLries

a arr(rr,t,) Z An (rt) cos n
n=O

ar6 (rt,) = B n(rt) sin nO (2-18)

n=l

6g(r,t,Q) Z Cn(r,t) cos no

n=O

and the coefficients determined in the same manner as used previously for

velocities are

(1+ )G1 + ( sin 201 n = 0

A -- k • (I-V ) 1 + (i+v) sin 2 1 + (.) sin 481  n = 2
n(in) 23

- (2-19)
(1-)sin(n-2)91  (l-V)sin(n+2)01 +l+v) sin nO1

n-2 + n+2 + n

n = 1,3,4,5,...

sin 481ap(l-, ) Jl ....i n = 2

B a -Bn(in) = 2x
sin(n-2)G1  sin(n+2)G1

n-2 n+2 n = 1,3,4,5,...
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n(l+)el - sin 29, n = 0

n(-l) 1 + (+7v) sin 21 + (l) sin 4e n = 2
f(V-I) sin(n-2)9 1  (V-i) sin(n+2)0 1  2(i+v) sin nO 1

n-2 + n+2 n

11 n 1,3,4,5,...

1 1 where the subscript (in) again refers to the incident stress wave.

As noted earlier, the reflected and diffracted wave is represented

as a diverging or outgoing cylindrical wave from a line source whose origin is

the axis cf the cylinder, and includes both dilatational and shear components.

11 The outgoing potential functions are expressed as infinite series, each term

of which will henceforth be called a mode

Tout = Z fn(rt) cos no

n=O

*out = gn(rt) sin no (2-20)
n=l

It is shown in the appendix that the coefficients are of the form

fn nc f Fn(t -ircosh u) cosh nuI duI
c1 0 11 1

(2-21)

SfO Gn(t r cosh u ) cosh nu du
c2  0 c2  2 2 2

where Fl(t cosh u and Gn(t r cosh u ) represent the nth orderc Ul c u2

derivative of the respective functions, n being equal to the mode number

considered.
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To express the velocity components of the medium at the boundary

$1 due to the outgoing waves as in equations (2-14), one differentiates

equations (2-9) with respect to time and substitutes the expressions given

II above for the potential functions. This results in the following for the

p! velocity coefficients

CO

nt+l~o Fn 2 (tl) cosh u cosh nu du

n(out c f
1 o1

+ (n+l 4 Gn+2 sinh u2 sinh nu2 du2
c2

00 
(2-22)

f 0 n+2(,) sinh u, sinh
li n(out) 1 

+ 1 u 

0

1

cc

n+l G cosh u2 cosh nu2 du2
c2  0

where (tl) and (t2 represent the arguments of the respective functions.

The subscript (out) refers to the outgoing wave.

The stresses in the medium due to the outgoing waves are also

expressed in series form as in equations (2-18), the coefficients being

found by substitution into equations (2-10)

(_l)n Fn+2(9l) cosh nul[ + 2 cosh 2U du1

n(out) 0 cn+2o

.- , Gn+2 (t2) sinh 2u2 snh u

Sn 2  2 sin2 nu2  2c2
(2-23)
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BA O Fn+2 (t sinh 2u sinh nu du
Bn(out) = nC+2 f1 1 1

(l)2g G n+2 (t ) cosh 2u cosh flu du
- n+2 12 2 2 2
c2  

0

Fn+,2(l) coshnuI [--2 sinhU]du
C n(out) = n+2co 1 2 1 1

C1 0

+ (_,)n, (On+2(, sinh 2u sinh nu du2

+ +2 2 22 2

2.12 Shear Wave

The orientation of the incoming plane shear wave with respect to

the spatial coordinates and time are shown in Fig. 2. In this case the shear

stress and tangential component of displacement must be even functions of 6

while the radial stress, hoop stress, and radial component of displacement

are odd functions of 6.

The incoming wave expressed in terms of a shear potential function

is

*in = aS . s(x + c2t) (2-24)

from which the velocity of a particJe behind the wave front in polar

coordinates may be derived as

a
= sin 6c 2

a (2-25)
= Cos 0

PC 
2

The stresses in the medium behind the wave front are as shown in Fig. 2. In

terms of polar coordinates they are
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rr s

]G = =a. cos 28 (2-26)
aos = -a. sin 20

I! Velocities and stresses due to the incoming plane stress wave as functions

p of radial distance and time are expanded in terms of Fourier series in a

manner similar to that of the dilatational wave, except that because of the

difference in symmetry, the sine and cosine terms are interchanged. The

coefficients are also found in a similar manner and are given here. The

Ii coefficients for the velocity series are

sin 20

I• as  J 1 2 n =1
an(in) Vpc2 x sin(n-l)01  sin(n+l)01

ni n = 2,3,...

(2-27)

sin 81  n =0

a sin 2 nI
Sn(in) -pc'2 x i +  2 n 1

sin(n-l)61  sin(n+1)0 1

n-i + n+l n = 2,3,...

and the coefficients for the stress series are

sin 491
an =2

A
n(in) sin(n-2)01  sin(n+2)Q1

n n+2 n = 1,3,4,5,...

sin 21
2 n =0

a sin 41
B i = x a + n =2
n(in) =it 1 1 7F

sin(n-2)01  sin(n+2)81  (2-28)

n-2 + n+2 n =1,3,4,5,...
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C A

n(in) n(in)

I is a time dependent variable similar to that for the dilatational wave

Hf except that now it is a function of the position of the incoming shear wave,

which travels with velocity c2.

The outgoing potential functions are expressed modewise as

%~ut f Z n(r,t) sin no
n=l

Ii (2-29)

II *out= Z gn(rt) cos no
n=O

H) where the coefficients are of the form

f L =fi(t cosh u) cosh nu du
n c n 0 c1 11

(2-3o)

(i) n  G f n(t - cosh u) cosh nu du

0n n 2 2 2 2

The terms have the same significance as in the case of the dilatational wave.

Modal coefficients are derived as before. The coefficients for the velocity

terms are

"(_)n AO+2( cosh u cosh nu duan(out) =  c+l11 1

(_l)nn +2(Y sinh u sinh nu2 du2
c(2  0

(2-31)
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bn(out) 2() sinh.u sinh nuI du1

S1 00

+ (_,)4 f+2(t ) cosh u2 cosh nu2 du2
C2  0

and the coefficients for the stress terms are

c 1  0A c s f u 2 c o h

n+2 Gn+2(t2) sinh 2u2 sinh nu2 du2

+ c 2 2

00

n(out) - n+2j f 1 ih2l snnu1 u
C1 0

1. 00

+ n+2

"(_l)nl O F + ( ) si h uI s n

S Gn+2 (E2) cosh 2u2 cosh nu2 du2'" n+2 2 2 (2-52)

I c 2  0

00

SoutO Fn+2(n+) cosh nul[- 2 sinh2 Ul] du1

cc(_,)n I Gn+2 ()sinh 2u sinh nu2 du
2 2

2.2 Equations for the Shell

In the following derivations of the equations of motion for the

shell, it is assumed that the thickness of the shell is small in relation to

its radius. This assumption permits description of the behavior of the shell

in terms of its middle surface, and effectively concentrates all of the mass

in a line thickness. This should be kept in mind when interpreting the results.
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The effects of shear and rotatory inertia are not considered, since they

fi affect only the very high modes, which are not considered in this study.

The deformation of any point (0) on the shell can then be described

| I by specifying the components of displacement (Fig. 3):

us = radial displacement, positive outwards

v = tangential displacement, positive in the direction
of increasing 0.

The strain energy of the shell per unit length can be expressed as

u -- (k)2dO + s~- f c RdO (2-33)
00

where Es = "plane strain" modulus of elasticity of the shell

I = moment of inertia per unit length of shell

A = area of the cross section per unit length of shell

k = change in curvature of the cross section

£0 = extensional strain in the 9 direction

R = radius of the cylinder

Flugge (2) gives the expressions for the curvature and extensional strain

terms as

k (---I_+R 2 Us)

and

1 s
e = (- + us)

correct to first order terms. The strain energy equation in terms of the

components of displacement then becomes

El 2 a2u 2 EA v  2

u = s ( s_+ Us) 2 +C () + us ) dO (2-34)
2R3 0 ;7 s + OF 0
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HI The kinetic energy of the shell can be expressed as

T= ( + v ) RdG (2-35)

where

m = mass of shell per unit surface area

2.21 Dilatational Wave

In view of the symmetries of the problem, the displacement com-

ponents of the shell can be expanded in terms of the following Fourier series

Us(9,t) = Z asn(t) cos no

n=O
(2-36)

v (9,t) = bsn(t) sin no

n=l

Equations for the strain and kinetic energies of the shell are then expressed

as the following quadratic forms in the generalized displacements and

velocities

( Ig + ) 2 + E... 2n(l'n2)2  s 8 (nb +a )2U = R3 R aso R3  a n(1 n) + -'n s n
n = l n = l s2 -s7 )

(2-37)

.2 MiTR 2 .2T mARAso + / (n + b )
n=l

The Lagrangian equations of motion in terms of the generalized displacement

coefficients a and b aresn sni

sn sn

d ('r (2-38)

sn sn
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where Qn and k are generalized forces corresponding to the displacement

H terms a and b n, respectively. The following equations of motion result

j EaA Q o
+ -7 a n =0so 0 a0- s 2xmR

(2-39)
E 1 2 E A

sn + 8 (-n2) a + nb(an +nbs)"= n = , 2,...

MR M

isn~ MR s n n MXrRfocs adnthprcil

Now to determine the generalized forces Qn and the principle

of virtual work is applied. Consider a virtual displacement corresponding

to an increment ba of coordinate a
an sn

Virtual work, by definition = Qn •asn

The external forces acting on the shell are

crr-- Z n cos no
n=O

= sin no

n=l

where A and B represent the sum of the forces on the shell due to then n

incoming and outgoing stress waves

A =A(in) + An(out)
n n n

Bn =Bn(in) + Bn(out)

The coefficients An and Bn have been discussed previously. The work due to

a virtual change of the generalized coordinate a issn

2x

Virtual Work = f A cos2 nO basn• RdO
0 s
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Hi The generalized force term is determined by equating the two expressions of

work, from which we get

Qo 2%R 1 0 n = 0

The equations of motion now become

12R 2n=BAOa

sh+  (1-n )2 ash + m2( + nbsn) = -

(2-40)
ER n 2,n

+ 2 2 (a n+ nh ) =nban~s an2an a

2.22 Shear Wave

wf Because of the difference in symmetry associated with the shear

wave as compared to the dilatational wave, displacement camponents in the

case of the incoming shear wave are written as

Us(G,t) = n a (t) sin no

n=l

00 (2-141)

v8(Q't) = Z bsn(t) cos no

n=O

Expressions for the strain and kinetic energies in terms of the generalized

coordinates asn and bsn now become
n an

S (l-n 2 ) 2  IsA Y( an)2
U :- an + (-nb an + an

n=l n=l
(2-42)
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H 00

T MK2 + Mn .2 .2
so 2 S n an)

n=l

The equations of motion determined in a manner similar to that of the

dilatational wave are then

2 E 2 IA
sn+ -(ln a) + - (asn "nb

(sn n) =

n R2 an sn m

2.23 Effect of Additional Mass

The equations of motion derived thus far assumed no mass within the

shell. The simplest way to consider the effect of additional mass is to

assume that it is distributed within the shell symmetrically about the axis.

The total quantity can be assumed equal to 2grRm', with m' the magnitude of

[1 the added mass measured in terms of the surface area of the shell. If it is

assumed to move with the same velocity as the mass center of the shell, its

kinetic energy can be expressed as

2x 2

(-us cos + f sin O)dG (2-44)

for the case of the incoming dilatational wave. If us and vs are replaced by

their Fourier expansions, and if the indicated integration is carried out,

the kinetic energy T' due to the additional mass may be represented as

T m'rR .2 • ' 2= - (sl - 2albs + Osl )

This kinetic energy ,aust be added to the kinetic energy of the shell which

was derived earlier. Since the above expression affects only the n = 1 mode,
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the other modes need not be considered. With this additional kinetic energy,

the equations of motion for the n = 1 mode become

ml B 8
+'l" ( l"bl +  (a., + bl --I-

H IA (2-45)

If now we add the above equations, we get

s1 s1i 2 s s M m

or

2E AA B1
sl bsl "mR2 1 +  sl m m

and

23A A, B_
bsl ="a " - (a8 + bs51 + I+ m

By making the appropriate substitutions for asl and bsl, the equations of

motion can be written as

E A A __ B
+- --(a + b _____1

sl mR2 si si m (m+M') m 2(m+m')

(2-46)

s A (a +b l ml B1 2m+m'
sl mR2 s i -l m 2(m~m') +r .7 (m+m')

Note that these equations are similar in form to the equations derived earlier

without the additional mass; the effect of the additional mass merely alters

the right-hand side.

In the case of the incoming shear wave, the kinetic energy of the

additional mass is
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H 
23 

2

2X W 21 ( sin 9+ cos 0) dG(2- 47)

and by a similar method, the equations of motion for the n 1 1 mode are

written

+ . (Sa  b ) i = - m+m' B1 m'

sl MR 2 81 sl mm(mmm)
EA mt(2-48)

bs- mR2 (1 b 1  m 2(mtn') + m '" 2(m+m)

The significance of the additional mass on the numerical results is discussed

in a later chapter. Inclusion of a flexible support for the additional mass

is also possible by changing the above equations; however, this problem is

not treated here.

2.3 Boundary Conditions

It is assumed that the shell is attached to the medium permitting

no differential displacements at the boundary between the two. Thus, con-

tinuity of stresses and displacements are maintained at the boundary. A

convenient way of satisfying the boundary condition of equal displacements

of the shell and medium is to equate the corresponding velocity components

of the shell and medium. This is done modewise for both the dilatational

and shear incoming waves by merely equating the coefficients of the velocity

Lterms as follows
n = n(in) + (out)
n n n(2-9)

= S(in) + (out)
sn n n
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1 2.4 Sumary of Equations in Non-Dimensionalized Form

HI It is convenient to express the equations derived earlier in

non-dimensionalized form by introducing certain dimensionless variables and

parameters. Let

a E tc
an = on (2-50)

b= n R 5 P-

An = R __

Hbe the non-dimensionalized form of the displacement and time variables.
Parameters are expressed as

Tip =-

V= (+v)(l-2v)k (-v)
(2-51)

t71t =

A

I

-The last two parameters given above become unnecessary when considering an

unstiffened shell since for this case A and I are given by

A =t and - t(2-52)112
Although the equations were derived considering an unstiffened shell of

Ii uniform thickness, the response of a shell with thin, closely spaced stiffeners

can also be approximated by specifying A and I separately frcm t. The
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equations of interest in non-dimensionalized form are

f n - P n(al) + QLn(FG)

k n P2 n( 8) + Q2n(F1G)

an = Nl n(a nn) + Pn(a1) + Q3n(F'G)

LA = N2n(a n n ) + P4 n( 1) + Q
4n(FG)

where P n', P2 n, P3n , and P4 nare functions whose values are determined

directly from the position of the incident wave. OIn, Q2n, 3n, and Q4n are

functions of the outgoing shear and dilatational waves; and Nin and N2n are

functions of the displacements. These various functions in non-dimensionalized

form are derived from equations given earlier. Given here are those for the

case of the incoming dilatational stress wave.

sin 61  n =0

IVII "  sin 20 1
Pni(8) a 1 + n = 1

sin(n-l)6
1  sin(n+l)6

1
n-i + n+n = 2,3,...

sin 2 1

P2n(61) = __ 2 ( 2-=2

n( ' sin(nl)8 sin(n+l)o1 (2-54)

- ni-in =2,3....n-i n+l

,* (1-7) sin 201

(lZ) 61  2 n =0

(1--v) sin 49

P3 (01) V (1"')9 + (l+V) sin 2 + n =2

(-T) sin (n-2)0, (-T) sin (n+2) 1

n-2 + n+2

2(l+7v) sin nO1+ nni 45



11 sin41n 2

11 ~ P~(ol) = 27- n ~ - =p t sin(n-2)91  sin (n+2)91 n 1,, 5. .[1 n-2 n+2

Nl N1(a,~ I Is - I 1A + npn) +TI1(1-n2 ) an]

N211(a I,3n) -IVTE [q n + n

iiL Q(FIG) = -~ -n2( cosh u1 cosh nu1 du1

F+ (_) . ~ (c ~lP n+2t sinh u sinh flu du

C2 Jo 2 2 2 2

Q2n(F,G) =-(_,)nf Fr1+2a 1) sinh u1 s inh fl dii1

20

+3(,G (_)n c 1)2 f, cosh( 2) cos 2. cosh n2 u 2i

2 1 0+

(9,-~--- ( )J cosh (nu ) 2 h l u dun21+vl C21 0 2 21lJ

v . (:I)Gf, JF2( sinh ' sinh n u2

Q, (IG % Fn2 0n G~ 2u,2 sh u 2 cos 2du
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2.5 Other Equations of Interest

Dilatational Wave

The hoop stress in the shell is determined from the relation

ae= Es E

where

1 eq R( + us)

By substitution of the Fourier expansion of the displacement components the

hoop stress can be expressed modewise as a fraction of the absolute amplitude

of the incoming stress wave, as

T n= zlnn+ a cos nO (2-55)
n=O

The bending stress is determined from the relation

Esd 62 u
a -S a- + u)
sb R 2 8

which may also be expressed modewise as

0sb
= d L (n2-l) a cos nG (2-56)

p n=O

where d is the distance from the neutral axis of the shell to its extreme

fiber.

Stresses within the medium at any radius r may be determined by

sunmation of modal stresses as follows

S nZ_ cos nO

(2-57)
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sin no

n-I

a s n c o s n o9
nuO

where A, Bn and 7 are coefficients previously described as generalizedn) n n

[j stresses of the incoming and outgoing stress waves.

Shear Wave

The corresponding equations for the incoming shear wave are, for

the shell

U

a*Z (an-non) sin no1 81
n=l

(2-58)

is l d x (1-n2) a1 sin nO
n-l

and for the stresses in the medium

= n sin no

n-l

a B

=O n cos nO 
(2-59)

n-O

n- n sin no

n=l

where all terms are as defined before.
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CHAPTER III

HI METHOD OF SOLUTION

3.1 General

Hi In this chapter are presented the numerical techniques used in

solving the problem. Since the methods employed are similar in theory for

both the incoming dilatational and shear waves, only the solution to the

incoming dilatational (compressional) wave will be discussed in detail here.

The equations (2-53) to be solved consist of two pairs of coupled integro-

differential equations in the generalized coordinates of the shell and the

potential functions. The integral terms in these equations contain elements

of the outgoing wave potentials, both dilatational and shear, whose values

must be determined through application of the boundary equations at each

instant of time considered.

In the numerical solution, time is taken to be the independent

variable, and is expressed in terms of the half transit time of the incoming

wave across the cavity, T = tcl/R. Increments of time are expressed as a

fraction of the half transit time; if N is defined as the number of time

steps for the wave to travel one radius, then i/N denotes the elaspsed time

after the ith step has been taken (Fig. 4).

The position angle, 91, can be defined for any step in time as

arc cos (1 - i/N) (3-1)

After total envelopment, i.e., for i/N > 2, 81 becomes equal to ?r.

3.2 Numerical Integration of the Potential Functions

Lamb (4) notes that if a point source f(t)dz is located at the

point (x = 0, y = 0, z = z), its effect at a distance r from the origin in
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the xy plane can be represented by the equation

H9 = ' f(t dz
4 qr 2+zv Cl

H Jwhich may be represented graphically as in Fig. 5. To obtain the effect of

a line source of density F(t) on the z axis, spherically symmetric point

sources with the same variation in time can be assumed to be situated all

along the axis, and their combined effect represented as an integral over all

the point sources

q) , F(t - r2++z2) dzHr L1cl q r2-+zT 32

The limits of minus infinity to plus infinity are shown here in order to

represent the general case. It will be shown that for a disturbance beginning

at some definite time, the limits of the integral may be taken as finite.

Now let

r + z r2(l + z 2/r2)

Sr 2 cosh 2 u1

and the above integral can be written as

U

= F(t - cosh ul) du 1(3-.3)
0 1 1

from which the graphical interpretation in Fig. 6 is made.

Consider for the present the determination of the integral values

at the boundary r = R. We define t = 0 to be that time when the first effects

of the outgoing stress waves (i.e., from the point source at z = 0) reach the

boundary. As time increases the effects of other point sources progressively

further away along the z axis will reach the boundary in the xy plane. Thus

it can be seen that though the limits of infinity are given in the integrals,
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for finite times the limits can be represented by finite values. The maximum

11 value of the variable R cosh uI in equation (3-3) that need be considered can

therefore be represented as a function of time. At t = 0

R cosh ulm = R

I that is, ulm is zero for time zero. For any time later

R coshu m = R + tc 1

in the case of the outgoing dilatational wave (Fig. 6). R cosh ulm locates

I the point farthest along the z axis whose wave front has just reached the

boundary in the xy plane, c1 being the velocity of wave propagation. In

non-dimensionalized form this can be written

cosh ulm = 1 + = 1 +N

where the terms are as previously defined. Since the integration is over all

point sources whose wave front has reached or passed the boundary in the xy

plane, the integral expression of equation (3-3) can be written with new

limits

fO F(t R cosh ul) dul
-c 1 l u

Let

cosh u1 = 1 + (3-4)

where now becomes the variable of integration varying in value from

0 to T. In terms of the integral expression becomes

= F(-l+T-t)d (3-5)

Note that a singularity of the integrand occurs at = 0, for all values of T.

Paul (6) has presented a numerical technique for evaluating integrals of this
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general type taking into account the singular point. The method is essentially

a modified trapezoidal rule in which weighting coefficients are obtained. If

the range (0,T) of the integral is subdivided into subranges each of equal

HI length AT, the above integral for any time T = iA can be represented as

Hf()dt (3-6)

where f(Q) is a polynomial of first degree in which approximates the

quotient

4l+t/2

as a linear function over each subrange. The results of the integration of

equation (3-6) are then put in the form

(i-i)

[Am " Rm Fi-m+ m" Rm+l Fim+l] (3-7)
m=O

where

AMm= F {2(m+l) [(m+l)l/2- ml/2]- 3 [(m-l)3/2-m/2] }
(3-8)

= FA I (m+1)3/'2_m3/2I -2an ml)/_m/

represent a set of weighting functions which can be computed for any interval

being considered. For large values of m these functions were written in a

form more convenient for computational purposes by asymptotic expansion, to

get the following result

AM = [,+ -

Y&ja1 1 3 1 (3-9)
SF- + 32m3 m
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For an illustration of the variation of AM and 34 functions with m, see

I Fig. 10. Rm is termed the multiplying factor which for this particular

integral is equal to

1R =

All of the various integral expressions for the potential functions were

I Jsimplified to the form of equation (3-6) thereby permitting use of the above

weighting factors for all integrals. However, the expression for the multi-

I] plying factor R varies for the different integrals.

m
II The integration for the outgoing shear potential * is handled in a

similar manner, except for a minor modification which results from the fact

that the shear wave travels outward with velocity c 2 .

Consider for illustrative purposes some shear potential represented

as
OD

f G(t - R cosh u2 ) cosh u duc 2 u 2 d 2

0 2

Since the incident wave strikes the shell at time t = 0, the shear wave front

must also reach the boundary at this instant in order to satisfy boundary

conditions. Thus at t = 0

R cosh u2m = R

and for any time later

R cosh u n = R + tc 2

using the same reasoning as for the outgoing dilatational wave. We can express

the above equation in non-dimensionalized form as

cosh u2m = 1 + kcT
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I I where

k c2
C c 1

is a constant relating the velocities.

Again since u2 is a variable of integration we can write

Ii coshu 2 = l + k t

where t as in the case of the dilatational wave is the new variable of

integration vith limits 0 to r. In terms of this variable the integral is

II now written as

G ( - k- + - () i + k c ) d( -
0 (-io)

Note that the shear wave starts from the z axis at time T =-i/k which is

earlier than for the dilatational wave since it travels at a slower speed

(with fictitious material within .he shell) and must reach the boundary at

time equal to zero. The numerical integration of equation (3-10) is

accomplished in a similar method to that which was done for the dilatational

potential. The result can be expressed as

(i-l)
X-- [ %'* n 'Gi -m+ m'11 m'Gi-m+l] (3-11)

m=O

where AMm and B3m are weighting factors identical to those derived previously,

and Qm for this particular integral is

4i- (1 + kc)

c m
+ -te l

The expression for Qmis again dependent on the form of each integral considered.
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For an illustration of the variation of the F and G functions with time,

see Figs. ii and 12.

Hf 3.3 Solution of the Basic Equations

The equations of motion for the shell are solved by an iterative

procedure known as the Newmark Beta Method (5) with which values for the

potential functions, and the accelerations, velocities, and displacements

of the shell are determined.

1.1 In general the method consists of using a step-by-step integration

technique over successive time intervals assuming a specific variation of

acceleration during each interval. If we assume that at time T = (i-l)A all

values of potential functions, accelerations, velocities and dijplacements

are known, the method becomes that of determining the corresponding values

at a time r = ifr. For an assumed linear variation of acceleration over each

interval the equations of interest are

6 a + LTr
n,i n,i-i 2 n,i-i n,i)

AT2

LT_ ((3-12)

AT2
On,i = n,i-l + An,i-l + r (2yn,i- + )

where n denotes the mode and i the time. Note that in the above equations

the velocities and displacements are expressed in terms of 6ni-i and kin.1

acceleration components which generally are unknown.

Values for the acceleration components at time T = iAT are assumed

and the velocities and displacements determined from the above equations; then

by use of the boundary equations to determine the values of the potential
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functions, values of the acceleration components can be computed from the

equations of motion. The computed values are then compared with the assumed

values and if they agree or are within an arbitrarily established tolerance,

the step is completed, if not, the values of n, and' n'i just computed are

taken as new assumed values and the cycle repeated until the criterion is

satisfied. A detailed discussion of the procedure follows.

11 The equations of continuity at the boundary at time r = i.6- are

given in equations (2-49 ) and are rewritten here in the form

n,i P1n () + r l F,,..i;Gl .G)d
( 0  G(5-13)

n,i = P2n(91 ) + f Q2n(Fo,F,,..Fi; Go,Gl,...Gi) dt

0

where P1n and P2n denote functions related to the particle velocities in the

medium at the boundary due to the incoming stress wave; their values may be

determined directly at any time. The integral expressions denote the con-

tribution due to the outgoing waves. All values of F and G are known except

F i and Gi which are to be determined from the above equations. These equations

are now written isolating the unknown values of F and G terms

n,i =P1ln (a 1) + f Qin(Fo,FI,...FiI; Go,GI,...Gi.I) dt
AT

AT (3-14)

+ fO Qln (Fi'l'Fi; Gi'l'Gi) d

ni =P2n(91 ) + Z Q2n(FoF,'"'Fi-I; GOG",...Gi-) dt

+ fO Wn(Fil'Fi; Gi',Gi) d
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The integrals with limits AT to iAT are evaluated using the numerical

I i technique described in a previous section.

The next step is to assume values for dnai and k , the radial and

tangential caponents of acceleration of the shell, from which velocity and

displacement components are determined using equations (3-12). With these

values known, equations (3-14) become effectively two equations with the two

unknowns, Fi and Gi, which can then be determined.li

The equations of motion are given in equations (2-53) and are here

Ii written in the form

*6"6 = Nl(a , + P3n(9l) + 3 Q(F'F'...F , G'G....Gi) dn'i n,i Oi 1n

(3-15)

gni =N2(an,i; In i ) + P4n( 1 ) + f0 Q4n(FjFl'" .'Fi; GO,,...Gi) dt

from which the acceleration components a n,i and On'i are now computed. If

1± the camputed values agree or are within an arbitrarily established limit of

the assumed values, the step is completed; otherwise the computed values are

used as the assumed values for the next cycle of iteration.

The procedure described above requires that all parameters at T = 0

be known, including the initial values F and Go . Initial values of velocity

and displacement of the shell are sr, cified to be zero. From the short-time

approximation presented in Section 3.7 initial values of acceleration and Go

were determined to also be zero, and the values of F to be the following

T) in = 0

F'= (3-16)
0 V 2(-l) n+l n = 1,2,...

The short-time approximation also indicated that the radial acceleration

components near T = 0 varied as T1/2 and the tangential components as T3/2;
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thus to improve the accuracy of the caJculations, equations (3-12) for the

first step in time were modified to

• 2.. .

n,l 3 n,l n,l 5 n,l (3-17)

a•2.n,l -- (n,l n,l =

Without this modification, the results for the first step cannot be brought

into acceptable agreement with the short-time approximation.

The n = 0 mode is simplified somewhat because it has no tangential

component of displacement, and contains only the dilatational component of

the potential functions.

3.4 Stresses of the Shell and Medium

Solution of the equations of motion yields modal values of the

functions F and G, and the modal acceleration, velocity and displacement

1components of the shell. The stresses in the shell are determined directly

from the displacements using equations (2-55) and (2-56).

Stresses in the medium at any radius and time are determined using

F equations (2-57). They are here written in the form

a(rLr) Z [Sn( 1 ) +1 Tn(F)d + f Wn(G) dtl (3-18)

P n-0 0 0

where S 1n(1) represents the stress due to the incoming wave and the integral

terms that due to the outgoing waves. All are functions of both radius

and time. Consider the stresses in the medium for any radius equal to r at

time i = iA = i/N.

91 (Fig. 7) is now determined from the equation

61 =arc cos 1_ (l - iN) (3-19)r
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and takes on values from

1 = for T = 0
1r

to

eI = 7 for r > (i +r)

The integral terms must be recomputed for each radius and time considered.

As an example consider the integral

= f F(t - L cosh ul) du1

and let r 1, where k = R/r, represent the nondimensionalized time
rafter T = 0 required for the outgoing dilatational wave front to reach the

radius r being considered. Then for T < Tr the integral is equal to zero,

and for r > the maximum value of(r cosh u ) be written

r cosh ulm = r + ttc

or 
cosh u m = 1 + kr '

ii where T' = T-r represents the time after the wave front has reached the

radius r. We express cosh uI as

cosh uI = 1 + k

where is the same variable of integration as was used previously. The

integral is then expressed in terms of t as

F lV %7 dt
l= I - r (3-20)

To -isc

The numerical method of integration used is identical to that descr'ibed
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earlier for the integral at the boundary, with the result that the same

weighting factors ANm and Bm are applicable. Note, however, that the limits

of the integral are now 0 to '; also the multiplying factor Rm for this

(I particular integral becomes

11 2
By a similar analysis, the integral of the shear potentialII

f G(t - - cosh cosh u2 du2
Ii* Gt c2 u2)2

can be put in the form

Tr' G( - -. + T' - kk (1 + krk )dt

C /(3-21)Jo kk
1 + r c2

where

V=* - rs

For the potential
1 i .l i

rs k 'k-c r

The weighting factors AMM and 3M4 remain the same but the multiplying factor

for this particular integral becomes

= kc (1+ krk A

1+ 2
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3.5 Time Dependent Stress Wave

The problem considered thus far has dealt with an incoming stress

wave with a step distribution in time. The results obtained for the step

wave can be used through the application of Duhamel's integral to find values

for the response of a shell and medium to incoming waves with any time

variation. As an example, a stress wave which decays exponentially with time

(Fig. 8) according to the following equation is considered

-k

a()= ao(l - )e 0 (3-22)
p po 1

t represents the time at which the stress wave decays to zero and k is a
0

parameter which is related to the shape of the curve. Stresses at any time

equal to iLT can be found by the application of Duhamel's integral, here

written in the form

a(Ir) = st(it) + fO a st( --) dr (3-23)

a st is defined to be that stress resulting from an incoming step wave of

amplitude apo in equation (3-22). In the numerical analysis, the time

dependent wave is approximated by a series of rectangular sections as illu-

strated in Fig. 8.

3.6 Description of the Computer Program

The problem was programmed modewise for a high speed digital

computer (CDC 1604) using Fortran language, and considering only the first

three modes. Input data consist of the following parameters:

(i) The time intervals at which computations are to be performed,

expressed as the number of intervals required for the incoming wave to travel



one radius (one-half transit time). The degree of accuracy achieved is

ii dependent on this parameter, the smaller the interval the more accurate

the results. However, the machine time required for a given number of transits

Uf of the incoming wave varies inversely as the square of the interval size ap-

proximately, thus some sacrifice in accuracy is necessary to reduce the time

of computations required.

(2) The total time over which the computations are to be performed,

expressed as the total number of time intervals to be considered. Generally

speaking, all values seemed to have reached their asymptotic (static) values

within ten transit times of the incoming wave across the cavity.

(3) The ratio of the moduli of elasticity, Es/E, where Es is the

"plane strain" modulus for the shell and E the modulus of elasticity of the

medium.

(4) The mass ratio, ps/p, where ps is the mass of the shell and p

the mass of the medium per unit volume.

(5) Poisson's ratio of the medium.

(6) The ratio of the thickness of the shell to its radius. When

considering a shell whose area, A, and moment of inertia, I, are not directly

related to the thickness, A and I must be specified separately.

(7) The amount of additional mass within the shell expressed as a

fraction of the mass per unit surface area of the shell.

(8) The number of radii to which stresses in the medium are

desired.

(9) The time intervals at which output data are desired.

(10) The angular increment at which output data is to be computed.

Because of symmetry only values between 0 and 180 degrees need be considered.
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Additional input quantities in the case of the exponentially

decaying stress wave are T and k, parameters which define the duration and

shape of the stress pulse, respectively.

Output data consist of the acceleration, velocity, displacement,

and stress components of the shell for specified angles and times; and the

stresses in the medium for specified radii, angles and times.

3.7 Short-Time Approximation

As a check on the accuracy of the machine solution for short times,

the boundary equations and the equations of motion were solved approximately

by making a series expansion of all pertinent functions in terms of time as

the independent variable. Although the following discussion is limited to the

case of the incoming dilatational wave, the basic principles are the same for

either of the types of wave considered.

The expressions for the velocities and stresses in the medium

around the boundary due to the incident wave all have been written thus far

Sin terms of 91, the position angle of the wave. In terms of nondimensionalized

time T, all functions of l can be written in terms of T using the following1* 1

[. relations

cosG 1 =1-

sin 91 = 1- (3-24)

The integral values representing the effects of the outgoing waves

are alsc expressed as functions of T. The following example will illustrate

the technique used to accomplish this. For example, consider the transforma-

tion of the integral
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= f F(t - cosh u) du

As was shown in Section 3.2, cosh u1 in the integral varies in value for any

given time r from I to 1 + T. It is convenient for purposes of analyzing the

integral to represent the variable cosh uI as follows

cosh ul = 1 + WT (3-25)

where T is now a fixed value in the integration and w is defined as tie

variable of integration whose value ranges from 0 to 1. The function

F(t - 2- cosh u1 , = F(-l + r(l-w))c 
1

is expanded in terms of a power series as

F(-l + T(l-w)) = F° + 'i i(l ' )i  (3-26)
i~l

where Yi are unknown coefficients of the series. Since

du +- 1 ) dw
1 2 r,'3

the integral can now be written as

1
= [F + Yt(1-W) + .. -+ .. dw

from which after performing the indicated integration

S=4-: F° + ( 4 l " I Fo) + T 2 (3-27)

The integrals which represent the effects of the outgoing shear

wave can also be transformed in somewhat similar manner. Consider for example

the integral
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SG(t- cosh u2)cosh u2 du2

c_ 2 tcI0 2.
In this case cosh u2 varies from 1 to 1 + kc Twhere k 

= and - -.

Therefore we write

coah u2 = 1 + k T (3-28)

2 i where w is now the variable of integration ranging in value from 0 to 1 in

the integral. The function

G(t R cosh u G(- - +- 2c

2 is expanded in terms of a power series as

G(- - + r(l-w)) = G O + Z T
Ci=l

where ei are unknown coefficients of the series. From equation (3-28)

r -- wk r1
du c- -.(wk.) d2 = 1 - 5 7 2 c 2 .jc

The integral written in terms of the variable w is now

C [G**I o + elr(l-w)+.. 1Jj + c~- + 1*J~ + wk x dw

and performing the integration

% : 2iFcT T(2 Go) + ,2( l + L k Go ) + (3-29)

The same basic technique is applied to all the integrals so that now the

effects of both the incoming and outgoing waves can be written in terms of T.

Substitution into the continuity equations and the equations of motion yield

the following for any mode
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i* ii-

a = fli(F,G) 2

UI

=1 f2i(F,G) 2

(3-30)

+ nli(ao,) = 1(F G) i  2

+ 12 , Z f4i(F,G) 2
i=l

where fl,, f2i, f3i, and f4, are coefficients which contain certain elements

Fo, Go, Yi ad Fi of the potential functions; 1i and 12 are known functions

of the displacements.

To solve the above equations, the displacement components of the

shell are expressed as Frobenius (8) type series

i, Pic+i

(3-31)
I = qi c+i

i=l

where pi, q,, and c are unknown coefficients. Substitution into equations

(3-30) results in the following set of equations

i 1

(cii) 2
Pi (c c+ii = fli(F,G)-T

i=l i=l

qi (c+i) *c+i-i = 1 f2i(F,G) i - 2 (3-32)
i~l i=l
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Z Pi (C+i)(C+i1) + Z l(p,qi)c+i = Z f3i(FG) i 2

i=l i=l i=l

m 1

qZ (c+i).(c+i-1) • C+i-2 + 12(pi,qi) c+i _ f4i(F,G) 2

isl i=l i=l

The coefficient c is now determined by inspection. Then through a step by

step process which involves the equating of coefficients of like powers of T,

values of pi, , and are determined. The following equations are then

used to find values of the potential functions, and the displacement components

of the shell.

o

F(T) = F0 + Y1
i=l

G(-r) Go + Z i~i

i=l

Li ()= Z, Plc
i=l

L c+i

i=l

Velocity and acceleration components may be determined by differentiation of

the above expressions for the displacements.
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CHAPTER'IV

DISCUSSION OF RESULTS

4.1 General

* Results of computations performed to determine the effect of the

various parameters are discussed in this chapter.

Although equations presented throughout the study have been written

to include an infinite number of modes, the greater part of the actual calcu-

lations performed and presented here are the results obtained considering only

the modes n = 0, 1, and 2. It is important to note that during envelopment of

the shell by the plane stress wave, a Fourier series representation of the

incoming wave is objectionable in that the series at this stage is slowly con-

vergent, thus necessitating a large number of modes to accurately represent the

plane wave. However, after passage of the wave across the cavity, the Fourier

expansion of the incoming stresses around the boundary results in coefficients

of all modes except n = 0 and 2 becoming iden.ically equal to zero for the

plane dilatational wave, and coefficients of all modes except n = 2 becoming

identically equal to zero for the plane shear wave. Therefore, stresses due

to the outgoing waves in modes corresponding to those of the incoming wave

whose coefficients become zero must also eventually vanish at long times. The

limited study conducted for modes greater than n = 2 indicated that the

maximum effect of the higher modes occurs within one transit time of the

incident wave and rapidly decays, thus contributing relatively little to the

maximum response of the shell which occurs after several transit times.

However, for determining the early time response of the shell and medium,

the higher modes are significant and should be considered in further extension

of this work.
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In the tables and figures to be discussed, quantities given in

non-dimensionalized units are defined by equations (2-36) and (2-50). Stresses

are given in units of the absolute value of the amplitude (ja I or los1) of the

incident wave; a negative stress means a compressive response to an incoming

compressional (Fig. 1) or a positive shear wave (Fig. 2). The physical

properties of the shell relative to those of the medium, as well as the nature

of the incoming wave are indicated on the graphs. Unless otherwise stated,

the shell is considered to be an unstiffened one so that its cross sectional

Li area and moment of inertia are related to the thickness as given by equations

17 (2-52). Except where indicated, there is assumed to be no additional mass

within the shell. Numeral subscripts denote the mode number.

The shell and medium have been assumed to exhibit linearly elastic

behavior throughout their stress histories, which for the practical problem

does not permit evaluation of any spalling or non-elastic effects.

Values of stresses given are in addition to those which exist prior

V. to the arrival of the incident wave. For the elastic case, the effect of

Li prior stresses such as those resulting from the overburden may be taken into

account by merely adding them to stresses caused by the incident wave.

For clarity of presentation and because of the impracticability of

including solutions for all possible permutations of the parameters involved,

the discussion in this chapter is limited to a few representative cases.

4.2 Modal Response of the Shell and Medium

Figures 11 and 12 illustrate the shape of the modal components of

the dilatational and shear potentials obtained in the solution to a typical

problem. It appears that a singularity occurs at one transit time in the

case of the F functions resulting in the slight irregularity of the curves at
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this point. Since computed -alues of stresses were determined to be rather

insensitive to relatively large variations in values of the F and G functions,

the effect of the irregularity would seem to be slight.

Figures 13 through 20 show modal acceleration, velocity, displace-

ment and stress components for the shell and stress components for the medium

at the boundary, as they vary with time. Static values shown were computed

using the method given in Appendix B.

The high accelerations computed near the beginning are not truly

representative of the actual case, since they are the result of assumptions

made earlier in deriving the equations for the shell. The shell was repre-

sented by a line describing its middle surface which permits no variation in

accelerations, velocities, and displacements of particles through the actual

thickness. Also, no provision was made for refraction of the incident wave

through the shell lining. These limitations restrict the applicability of

the solutions to a shell whose thickness is small relative to its radius.

The n = 1 mode is primarily a translational one which accounts for

the rigid body translation of the shell after it has been enveloped by the

incident wave. Thus, it can be seen that the velocity components for this

mode approach constant values equal to the velocity of the medium behind the

incident wave front, and displacements grow without bound reaching a straight

line variation with time. Note that the stresses contributed by this mode

reach their peak values within one transit time and quickly damp out,

approaching zero asymptotically. For the incident shear wave, the n = 0 mode

is also a rigid body movement which accounts for rigid body rotation, and

contributes little to the stresses.

Modal quantities obtained are coefficients of Fourier series;

therefore, the total response or effect is determined by adding the coefficients
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multiplied by the appropriate sine and cosine terms for any desired angle.

Figures 21 through 24 show the time variation of stresses in the shell and

medium for various angles when the first three modes are summed. The maxi-

mum stress in the shell for any angle may be determined by adding the bending

stress to the hoop stress. This is indicated in Figs. 21 and 24 by the

dotted line above the hoop stress.

Figure 25 is given to illustrate the relative magnitudes of the

hoop stresses in the shell and medium for several thicknesses of shell. This

also shows the effect of varying the relative thickness of the shell on the

hoop stress in the medium. The dotted line indicating the hoop stress in

the medium for an unlined cavity was obtained from the report by Paul (6).

Figures 26 and 27 show how the relative thickness of the shell

affects the radial and shear stresses in the medium.

As was discussed earlier, stresses in the medium for any radius

can be determined by reevaluating the integral terms which represent the

effects of the outgoing waves, and adding them to the Fourier expansion of

the incident wave. Figure 28 shows the modal and total radial, hoop, and

shear stresses which were computed for a time equal to 10 transit times.

These values are compared later with the static stresses, but on this figure

the static itresses do not differ by more than the thickness of the lines,

and therefore are not shown. The time variation of the radial and hoop

stresses in the medium for various radii are shown in Fig. 29 for the incident

dilatational wave, and in Fig. 30 for the incident shear wave.

4.3 Short-Time and Asymptotic Comparisons

A method for obtaining a solution to the problem which is ac--ate

for very short times (i <( 1) was presented in Section 3.7. This was desirable
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to validate the machine solution and to determine the effect of the size of

time interval selected. The results for a representative problem are shown

in Figs. 31 through 33 for the incident dilatational wave, and in Figs. 34

through 36 for the incident shear wave. Four terms of the series representing

the F and G functions, and three terms for other quantities were used in the

short-time solution.

As can be seen from the graphs, good agreement was obtained for

very small values of time, somewhat shorter time being obtained for the shear

wave as compared to the dilatational wave. The shorter time results from the

nature of the forcing functions (Eqs. 2-19 and 2-32) which indicate a more

rapid rise in the incoming stresses for the incident shear wave.

Within the range of time for which the short-time solution is valid,

decreasing the size of time interval for each step of the machine solution

resulted in closer agreement between the two methods, as is to be expected.

It also indicated that the stresses and displacements are not as sensitive to

variations in the interval size as are the F and G functions.

At the other end of the time scale, i.e., at a relatively long time

after passage of the incident wave front across the cavity, another check on

the accuracy of the machine solution is afforded by the asymptotic approach

of all values to the static results. Figures presented thus far have shown

that the static condition is approached well within ten transit times.

The time interval used in the machine solution affects the stability

of the results for long times. This is indicated in Fig. 37 which shows the

variations in computed values of the displacement components for mode n = 2

at relatively long times, for different time intervals. N represents the

number of time steps required for the incident wave to travel a distance equal

to the radius of the opening, and 1/N defines the interval size. Note the
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smaller graph which shows the percentage difference between the computed

values at ten transit times and the static values.

As the interval is decreased the machine solution at long time

approaches the static solution more closely. Below a certain size of time

interval, there is little difference in the results, which indicates asymp-

totic convergence to the correct solution. For this particular problem,

N = 30 seems to be "critical" in that for N < 30, wide variations in computed

values occur. As the mode number increases, the "critical" value of N in-

creases rapidly, and the requirements of computer storage and calculation

time become decisive factors which make impractical the study for long times

of modes much larger than 2. The interval size selected for all problems

solved (exclusive of the study to determine the effect of the interval size)

was set equal to 1/40 (N = 40) of the half transit time of the incident wave.

For the static case, only the modes n = 0 and 2 yield values other

than zero. Table 1 compares values of shell stresses and displacement com-

ponents in these modes obtained from the computer solution to a particular

problem at a time equal to 10 transit times, with the static solution. Most

pairs of values differ by less than one percent. Comparable agreement of

stresses in the medium at various radii are shown in Table 2. Values in

Tables 1 and 2 were obtained from the solution to a problem whose parameters

were: qE = 4.0, Tp = 3.0, qt = .05, and v = .25.

Although the figures and tables presented above were for a particular

problem, the discussion given is applicable to all problems which were solved.

Changing tht physical characteristics of the shell and medium within the range

of values studied had hardly any effect on the degree to which the long time

machine solution and the static solution agreed. Also, the absolute value of

all quantities which should asymptotically approach zero became less t..an

.00005 in each case well before ten transit times.
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V 4.4 Effect of Parameters

Studies were conducted to determine the effect of each of the

following parameters:

t v v (medium)

for an unstiffened shell without additional mass. Since it was impractical

to take into account all permutations of the above parameters, a basic shell

where

E = 4.o Tip = 3. 0

Tt = .05 v = .25

was considered from which each parameter was separately varied to determine

its effect on the resulting stresses and displacements. Calculations

performed were only for the case of the incident dilatational (P) wave.

Of particular interest was the determination of the maximum dynamic

stresses and displacements (not including rigid body translation) due to the

incident stress wave. Tables 3 through 6 compare the maximum values obtained

in the machine solution with the static solution. "DLF," termed the dynamic

load factor, is defined as the factor by which the displacement or stress

produced by a applied as a static load should be multiplied in order to obtainP

the maximum dynamic value. Figures 38 through 41 are given to graphically

illustrate the variations in stresses and displacements, both static and

dynamic, in the range of parameters considered. Stresses are given in units

of Ia p and displacements in non-dimensionalized units defined by equations

(2-36) and (2-50).
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Table 3 and Fig. 38 illustrate the effect of increasing the

relative thickness of the shell. The range of values selected for n is

probably much greater than is practical or Justified by the assumptions of

the analysis, and was considered only to determine the trend of the results.

As nt is increased, displacements and hoop stresses of both the shell and

medium decrease; however, the bending stress of the shell and the radial and

shear stresses in the medium at the boundary increase. Figure 25 shows the

time variation of the hoop stress in the shell and medium for various thick-

nesses of shell, including the case of the unlined cavity.

Increasing T results in a rapid increase in the displacements and

stresses of the shell and a much lower rate of attenuation of the hoop stress

in the medium. See Fig. 39 and Table 4.

Table 5 and Fig. 40 show that the parameter nP has no effect on the

static results but does affect the dynamic response. Increasing jP increased

the maximum response in both the medium and shell.

Figure 41 and Table 6 show that within the range of Poisson's ratio

for the medium considered, as v increases displacements and stresses in the

shell decrease, with very little additional reduction of the medium hoop

stress.

Additional mass within the shell was shown to contribute relatively

little to the overall response. This is mainly due to the simplifying assump-

tions which were made in deriving the equations of motion to account for the

additional mass. Figure 42 shows the effect of the presence of additional

mass equal to 407 times the mass of the shell on the dynamic response of a

particular shell. Additional mass decreases the displacements and increases

the dynamic stresses in mode n = 1.
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|i 4.5 Response to Time Varying Incident Wave

The results obtained from a solution to an incident wave with a step

variation in time was shown to be useful by application of Duhamel's integral in

determining the response to any time varying stress wave. The case of the

exponentially decaying wave was considered, the results of which are

illustrated in Fig. 43. Substantial reductions in the maximum stresses can

be expected as the duration becomes smaller. In Fig. 44 is shown the effect

of a linear rise in the amplitude of the incident wave. Note that for a

wave with a linear rise followed by a step variation in time, very little

decrease in maximum stresses occurred.

4.6 Comparison with Previous Work

Baron (1), using a different method of analysis, investigated the

dynamic response of two shells with different physical characteristics sub-

jected to an incident plane dilatational wave. Figures 45 through 49 compare

his results for the modal values of stresses and displacements of the thin

shell, with results obtained by the method of solution given in this study.

Similar results were obtained considering his so-called stiff shell. Although

the shape of the response curves can be considered similar in the two reports,

the magnitude of the dynamic response in Ref. (1) seems consistently higher

than in the present report, and the long time results asymptotically approach

values higher than the static solution. The following table compares the

maximum modal stresses, for Poisson's ratio of 0.25, obtained in the two reports,

and also shows values for the static case. Stresses are given in units of

10 p. The bending stresses for the stiffened shell cannot be compared directly

since d, the distance from the neutral axis of the shell to its extreme fiber,

is not stated in Ref. (1).
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Thin Shell Stiff Shell

Maximum Stresses Maximum Stresses

Ref. Current Ref. Current
. Quant. Mode (1) Work Static (1) Work Static

0 -4.79 -4.56 -4.1o -4.79 -4.08 -3.67

2 4.69 4.11 3.67 3.42 3.20 2.95

asb 0 0.043 0.043 0.039 0.55 4.08d 3.67d

asb 2 O.140 0.137 0.122 1.70 13.29d 11.89d

4.7 Conclusions

Conclusions drawn from the results of the analysis are:

(1) The method which has been presented is practical for effective

canputation of the dynamic response of a cylindrical shell embedded in an

elastic medium when subjected to plane dilatational. or shear waves. The

solution presented herein is believed correct since it was checked by independent

methods at short and long times.

(2) Peak stresses and displacements in both the medium and shell

occur sometime after the transit of the incident wave across the cavity; of

the problems solved, both the average and mean time at which the peak values

occurred was equal to 3 transit times. The dynamic effect measured in terms

of the ratio of the maximum stresses and displacements to the static values

varied within a relatively small range. The average value of this ratio was

1.12 and the mean, 1.11. Thus, for the cases considered at least, the maximum

stresses and displacements to be expected for a particular situation can be

roughly approximated by determining the static values and by multiplying them

by a factor of 1.1.
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(3) The largest stresses in the shell occurred for a relatively

thin liner in a medium with a low modulus of elasticity, low mass density,

and low Poisson's ratio. The greatest reduction of the hoop stress in the

medium as compared to the unlined cavity results from a relatively thick

liner in a medium with low modulus of elasticity and high mass density.

Additional mass within the shell has relatively small effect on the dynamic

stresses.

(4) The practical value of tunnel linings to reduce the maximum

stresses in the medium depends on the several conditions mentioned above, and

on the magnitude of the incident stress wave. Under favorable conditions,

reduction of stresses on the order of 30 percent or more is possible. However,

for materials such as granite, smaller reductions can be expected for steel

liners of practical size.

(5) Certain assumptions made concerning the behavior of the shell

have limited th applicability of the analysis to relatively thin liners.

Future studies of the behavior of thick shells would indicate the effect of

the approximations used herein. The analysis has also been based on the

assumption that the behavior of both the liner and medium is linearly elastic

Vi at all times. Perhaps a more desirable condition would be one in which some

inelastic behavior is permitted to take place in the medium surrounding the

shell or in the shell, or one in which some inelastic energy absorbing medium

such as cinders or foamed plastic surrounds the shell. As a subject of future

study, it is recommended that the behavior of thick shells, and thin shells

surrounded by some energy absorbing layer, be considered.
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APPENDIX A

DERIVATION OF THE EXPRESSIONS INVOLVING THE POTENTIAL FJNCTIONS

A.1 General Form of the Potential Function

The dilatational potential function must satisfy the wave

equation

2r 2 (A-1)
6r r r 2 c 2 6 2t

1: p in the case of the incoming dilatational wave is an even function of 6 and

thus can be expressed as a cosine Fourier series

= Z fn(rt) cos nG (A-2)

n=O

where fn is a function of r and t representing the modal coefficient of the

potential function. By substitution of the above expression into equation

(A-1) we obtain the equation that must be satisfied by f .

n 1 n n2 1 n
2 +2 + -2 fn = 2 (A-)

r r c 1 6t

The general solution of f is assumed to be of the formn

fn = r n Rn(r,t) (A-4)

Then Rn is some function of r and t satisfying

6 2R 2 3R
n in (2n+l)

t - - +  rjJ (A-5)

If Rn is a solution it can be shown that the corresponding equation for

R n+ is satisfied by

n n

Rn n (A-6)



66

By repeated application of this result it can be shown that equation (A-5)

is satisfied by

Rn = (Ta) Ro  (A-7)

where R is the solution of0

2[2i6 Ro 2 Ro 1 6oR
cI  + (A-8)t2  1 .6r 2 r -J

The solution to this equation for the case of a wave diverging from a center

is

R °  F(t cosh ul) du (A-9)

For the proof of this, see Lamb (4). Therefore, the coefficient fn of the

potential function is written as

n nf= rn(16 n,/
fn rT) F(t _ cosh u) duI  (A-la)

1. For modes 0, 1, and 2, this can be written

f o F (g dul
1 f 10

f 2 ='- F( ) cosh 2Ul dUl +  osu

00

where primes indicate the derivative of the function F with respect to its

argument. Note that the expression for the n = 2 mode contains derivatives

.- of two different orders. It is convenient to express the function f in

n

terms of derivatives of a single order which may be done through integration
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by parts. For the n = 2 mode we then wish to change the second integral to

an integral involving the second derivative of the function F. Integrating

by parts gives

U U U

00 0

where

= F'(tI) Tj = sinh u 1

d= FR(l sinh u duI  d = cosh u du
c1  11

Thus

CjF'(l) cosh u du = f F'() sinh udu + F'(91) sinh uI o

0 1 0 0.

The second term can be shown to equal zero since for its lower limit

sinh u 1  0; and for its upper limit, F' is the integral of the function

at the wave front which under the assumed initial conditions, does not exist.

Therefore, the coefficient of the potential function for the n = 2 mode can

be written as

f 2 =lf0h (t -rcosh Ul) cosh 2u du (A-11)
0 c 1 All

By a similar process the coefficients of the potential function for any other

mode can be reduced to the form

fn (_l)n F (t . cosh u) cosh nu du (A-12)
n c n O c1  1 1 1

1

The shear potential function must satisfy the wave equation

1 2 12 (A-13)
3r2 r rc r 2 2 t2

r ~ c2 t
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Ii fr in the case of the incoming dilatational wave must be an odd function of 6

i i and can be represented as

i = Z gn(rt) sin nO

n=l

i i and proceeding exactly as in the case of the dilatational potential the

general expression for the coefficient gn is found to be

_="n Gn(t - - cosh u 2 ) cosi, nu 2 du 2  (A-14)

h •A.2 Velocity Terms

The equations for the velocity components of a particle on the

boundary due to the outgoing waves are

2 1 2

(A-15)

The components of velocity and the potential functions are expanded in series

as

Y ;n(rt) cos no

n--O

= Z n(r,t) sin nO

n=1
0(A-16)

= . fn(r,t) cos nO

n--O

= Z gn(r~t) sin no

n=O
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Substitution into equations (A-15) gives

2 n n 6gn
a n (Ou t ) = a + -r t-

2 (A-17)
3f n 32gn

(out) = - -n Ot r 77 -"=rt

The expressions for the coefficients fn and gn are given in equations (A-12)

and (A-14). Using these in the above equations and by the application of

integration by parts we get the following velocity terms

a(out) - F n2 ) cosh u cosh nu du
n n-I 11 1 1 1

+ ('ln F n+2,

+ (_0)n FG n 2() sinh u sinh nu du
nl f2 2 2 2

00 (A-18)

L n (out) -1( )n 0 Fn+ 2 (t sinh u sinh nu, du1

c 0

+ '1 n F G n+2(t cosh u cosh nu du
Sn2 2 2 2

2

A,3 Stress Terms

Stresses in the medium due to the outgoing waves are written in

series form as

r = 7, An(r,t) cos nO
rr n

n--O

a j = Bn(rt) sin nO (A-19)
n=l

a@ z C ,c(r',t) cos nO

n--O
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By substitution into equations '2-10) the coefficients A , , and C are
nyn n

expressed in terms of the coefficients of the potential functions, f and g
n. n

f n n 6 n n gn l

(out) 0, - +  -- gn r n -j
nr r

[6f 2 69;gn]r 73 2 n 7 n- nrA-0

3o + 2 gn2n n n -gf -nnBn (out) rF.. - tf n 2 L 2 (A-2

X+ i i  n~ n g n 2 '

n rr r nr r

C6ot 2 f -~ 2rfg

+ [ r -n + -r 'c - n 2 j

r

Again, using the equations for fn and gn given earlier we can write the above

V coefficients finally as

A-n (out) n+2 F 1l) cosh nu1  + 2 cosh u du1
c O 1 ljI 0

n+2 I ) sinh 2u slnh nu dun+2 2 2 2 2c 2

B n+2 Fou. sinh. 2u1 sinh nu. du1n 0
c1 0

(A-21)
_,l)n., n+-2

nG :t2 .cosh nu cosh 2u du

c2

Cn(°Ut) "n*I-2H f0 Ftt 2  I cosh nu - 2 smnh 2 Ul1 ii
00n n+2 f I 1 1 du

c 0[

.+ G A sinh 2u sinh nu du
2  2 2

c 2 U
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PP ENDIX B

STATIC SOLUTION

B.1 Dilatational Wave

The static solution presented here is based on the application of

the theory of stress functions presented oy Timoshenko (9). Under static

conditions, it can be assumed that at large distances from the boundary of

the cavity the state of stress in the medium is equal to the stress field in

the medium behind the front. In polar coordinates this is

a (+V a ( )p cos 20rr 2 p 2 p

F (j) a sin 29 (B-l)

- (-+V) a + (lV) a cos 26

a p is the stress in the medium in the direction of wave propagation and vap

is the stress parallel to the wave front. v, derived from the assumption

that there is no strain parallel to the wave front, is equal to

V 1-V

It can be seen from equations (B-l) that the n = 0 and 2 modes describe

exactly the free field stresses. Therefore, the unknown stresses at the edge

of the cavity can likewise be expressed in terms of these modes

art = - P 0 P2 cos 20

(B-3)
a r = S2 sin 29

where Po, P2 , and S2 are the unknown modal components of stress acting at

the boundary. These same stresses must act on the shell. Thus the boundary

stresses in the medium and shell can be illustrated as shown in Fig. 9.
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The equations of equilibrium in the medium under plane strain

conditions are satisfied by the following expressions for the components of

stress

1 2a+
rr r Tr + 2 A2

r C

1 all - r l (B-4)rG r

a2

where n is the stress function in terms of r and 0.

B.11 n = 0 Mode

The general solution of the stress function for the n = 0 mode is

given by Timoshenko as

2
n = K log r + 

Mr

from which can be derived the stress components

rr 2v
r

arG 0 (B-5)

k
a -2- +2

r

The coefficients K and M are determined from the states of stress at r -4

and r = R

K R 2 [1+7 P1

M 2 -
01j (B-6)

For the conditions of plane strain, the strains are
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e [=rr - e

og [a - a arrj (B-7)

1

where

- E modulus of plane strain

1 - V for the medium

Displacement components are found by suitable integration of the following

equations for the strains in the medium

6u
Er  =

= u !v (B-8)

16u & v v

Displacements in the medium for the zero mode are

u = ( v P
(B-9)

-= 0

The corresponding displacement components of the shell with an exterior

compressive force P are found in Flugge (2) to be

u PR
S 0

R I s A (B-1)

v
s

-= 0R

where E

E modulus of plane strain
l s for the shell
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The unknown stress P is now determined by equating the radial displacement
0

components, to get

Po (17v a(B11
[I-i+ 1 +]

After P is determined, stresses in the medium at any radius can be found

using equations (B-5). Equation (B-10) gives the displacement of the shell;

and the hoop and bending stresses of the shell are, respectively

P R
0

(B-12)

0 sB u t

737 = 2 Rp

B.12 n = 2 Mode

The general solution in terms of a stress function Q is given as

Q = +-+ + N cos 20

r N

from which the stress components in the medium become

a =- [2K+ 6M+ 2] cos 26

r r

ae= [2ic + 6] cos 20 (B-13)

a = 2K - r- sin 20

Coefficients are determined as before from the states of stress at r --

and r = R

K p
B= ( )1
(B-1i.)
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M R4 [3(1i) O - - 221
R7- 2+S2

N = 1--v) a + P2+

The displacement components of the medium at the boundary can be expressed

as

U iF, (5v) 2(2-V)S 1
ii 1 2(v-l) + L '2 + cos 20E 33

(B-l5)

vi 1 2(-721-v2 2] sin 269

and the corresponding components for the shell are

us  P2 R3  S2  R
3  2-R TI __L-] cos 2o9

s S

(B-16)
V s P 2 R3  R S 2  R3  RiVs( + )+ ( + )sin 28

E5 56

The unknown boundary stresses P2 and S2 are determined by equating the dis-

placement of the shell and medium at the boundary. The hoop and bending

stresses in the shell are then found from the following equations

P2R 2S2R
a6 6  (- +  ) cos 20

tR3  (-7
S = 1- (2P2 

+
2 ) cos 20GSB 2 2

Displacements of the shell and stresses in the medium can be determined using

equations given earlier in the discussion. Total static stresses and dis-

placements are merely the sum of the modal values for any angle.
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B.2 Shear Wave

The free field shear wave stresses expressed in polar coordinates

include only the n = 2 mode

a a sin 20
rr s

ar9 =a s cos 20 (B-18)

ae =-a 8 sin 20

where a is the amplitude of the incoming wave. The static solution iss

obtained exactly as in the case of the dilatational wave except for the

interchange of sines and cosines resulting from the difference in geometry.

The resulting equations are

a. Displacement components

us [P2R3 S 2 R3
- 8 f sin 26

s (B-19)

v P2 RHR' ~ 2 R3 R)T ( I + ;C) , _- - -+ 2) cos 28
6E s3E

T

b. Shell Stresses

a0 6 = - + 3 sin 20

tR3 (2P 2 + 2  sin 20 (B-20)

s = . 2 S2)

c. Medium Stresses

a = - (2A + 6C + ) sin 20
r r

a r = - (2A - -D) cos 20 (B-21)

r r

6C
goo = (2A + 7) sin 20

r
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where

A=--
2

C = - "s + P 2 + 2S2 ]

D= -2a - -

In the machine program, the n = 0 mode is purely rotational and

thus we get a static value of tangential displacement. This is calculated

as follows

1 - s
Yot 2 xy 2 .±

(B-22)

v r srot -- g-
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DIJA!AIOL VAYV ti m 20 R/ I

Day. From Dav. Fre

ode 6aaat. Stat. much. static Mode Quant Btat. Mach. Static

o - cL 4400 4.006 .15% 2 - . ,4.613 4.9 .30%

0 -0. 4.ooo ,.oo6 .15 2 #9 3.845 3.856 .29

0 .100 .100 .00 2 I"0 3.077 3.1U 1.20

L~a..et..ad y qe (.5) 2 G5~b .346 .345 .299
: •~~svee gIUola ivep'n 1 =It fJ ~lop" Il

KOPICO~n defwd b No.(2-5) & (2-36)

SIM WAVS tm x 20 1/02

Dav. Prm
NO&. Qimt. Stat. NSCb. Static

0 5.000 4.996 .08%

2 oL 13,840 13-930 .65

2 tJ 11.535 11,539 .03

2 -O'go 9.232 9.149 .90

2 sb 1.038 1.015 .67

OUWAI8U OF W!C AND MAE= TAU=RS FM moDL law== or U UEL
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DXnA AIONAL WAVE 20 /cl

1.0 R 2.0 R 3.0 R _ .0 R

Mode Quant. Stat. Mach. Star. Mach. Stt. MaCh. Stat. Mach.

o - .Tv A0 .200 .550 .551 .615 .616 .638 .639

o - oo 1.133 1.135 .783 .785 .7-18 .72 .696 .697

2 - oT'r -. 153 -. 155 .iU .1.2 ..a6 .229 .271 .273

2 V* .307 .312 .. 8 .429 .38. .386 .363 .366

2 Ores .872 .868 .367 .368 .3ho .342 .335 .337

streams g1ve In mite of I(p

IA WAVN tim - 20 R/e2

1.0 R 2.0 R 3.0 R 4.o R

Mode Quant. tat.Mh. sta. Nah. st. Mah. stat. Mach.

2 T -. 46o -. 455 .332 .331 .675 .678 .81A .815

2 I .921 .913 1.283 1.286 1.151 1.15 1.090 1.092

2 -Ooo 2.616 2.636 1.101 1.10. 1.020 1.022 1.006 1.009

SM 2

OCWARIBOU CV SU'IC AND NM=~N VAUS S M MODL BMW= 11 M3 MWU
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0,, 91oow (9o')__

static am. me II Sttic (O maze MY t
.01 -9.21 -10.12 1.10 3.12 -2.49 -2.73 1.09 3.13

.05 -7.08 - 7.74 1.09 2.88 -2.01 -2.19 1.09 2.88

.10 -5.56 - 6.15 1.10 2.25 -1.67 -l.8 1.1U 2.25

.15 - 4.60 - 5.21 1.13 2.25 -. 45 -1.65 1.13 2.25

.20 -3.94 - 4.52 1.11 2.25 -1.30 -1.50 1.15 2.25

C0sb (goo) 0 ~(9(f

Static max. MY t Static j Mx MY tm

)i .01 .10 .1 1.11 3.38 - .09 - .10 1.10 3.25

.05 .45 .50 1.11 3.25 - .35 - .39 1.11 2.88

.10 .83 .94 1.13 3.00 - .55 - .63 1.I4 2.50

.15 1.18 1.36 1.15 2.88 - .68 - .79 1.17 2.50

.20 1.50 1.76 1.18 2.88 - .75 - .91 1.21 2.50

Bttc T max. w I OR Btte Max. ms t

.01 -9.65 -10.6 1.10 3.12 4.67 5.23 1.12 3.75

.05 -8.61 - 9.50 1.10 3.00 3.85 4.33 1.13 3.50

.10 -7.76 - 8.62 1. U 2.76 3.33 3.82 1.15 3.25

.15 -7.15 - 8.01 1.12 2.88 3.02 3.55 1.18 3.25

.20 -6.66 - 7.56 1.13 2.88 2.80 3.37 1.20 3.38

ratio of Nax. to Static # TIM 1'. transit time at vhich Nax. occur

TRW 3

07CT OF RHIATIV MICKMSS (W SM.
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__ S '().tatic am. ~ r DUO to 1 CX. F t

2 - 4.16 - 4.57 1.10 2.76 -2.27 -2.51 1.11 2.76

4 - 7.08 - 7.74 1.09 2.88 -2.01 -2.19 1.09 2.88

6 - 9.33 -10.11 1.08 2.76 -1.81 -1.97 1.08 2.76

10 -12.57 -13.41 1.07 2.76 -1.55 -1.65 1.07 2.76

16 -15.72 -16.47 1.05 2.88 -1.31 -1.37 1.05 2.76

IE static vb. DI tm~ I to

2 .23 .26 1.12 3.25 - .21 - .23 1.13 3.12

4 .45 .50 1.11 3.25 - .35 - .39 1.11 2.88

6 .64 .71 1.11 3.12 - .47 - .51 1.10 2.76

10 1.01 1.12 1.10 3.12 - .63 - .68 1.08 2.62

16 1.53 1.68 1.09 3.12 - .78 - .83 i.o6 2.62

'E static VAX. DiI t. static Nm F t
2 - 4.60 - 5.12 1.11 3.00 2.14 2.43 1.13 3.62

14 - 8.61 - 9.50 1.10 3.00 3.85 4.33 1.13 3.50

6 -12.22 -13.37 1.09 2.88 5.32 5.96 -.12 3.38

10 -18.65 -2D.20 1.08 2.88 7.92 8.82 1.11 3.25

16 -27.11 -29.-15 1.08 3.00 11.41 12.64 1.11 3.12

%tio of max. to Static iu- i n transit time at whieh Max. occurs

TABL 14

WEZCT Of RATIO Or MOWLI Or ILASTICrI'!
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pS" Sa I MR. 11 Sta al Mtic am. w t

1 -7.08 -7.67 1.08 3.00 -2.01 -2.17 1.08 2.88

3 -7 .7r 1.09 2.88 -2.19 1.09 2.88

5 -7.97 1.13 2.50 -2.26 1.12 2.50

7 -8.30 1.17 2.61 -2.34 1.17 2.62

S " -8.70 1.23 2.88 -2.45 1.22 2.88

U
iisu *a *at x y t

1 .15 .19 1.0 3.25 - .35 - .38 1.09 3.00

3 ".0 1.11 3.25 -.39 1.11 2.88

5 a.50 1.13 3.12 AlhI 1.15 2.88

7 .51 1.15 3.25 A- .3 1.21 3.12

30 .53 1.18 3.50 . .46 1.3o 3.50

StN" b. Stti

1 -8.61 -9.38 1.09 3.00 3.85 4.27 1.11 3.50

3 " -9.50 1.10 3.00 Ii.33 1.13 3.50

5 " -9.64 1.12 2.88 4.1 1.15 3.62

7 " -9.77 1.1i 3.00 4.45 1.16 2.76

0 -9.95 1.16 2.62 4.72 1.23 3.00

*etio of Mx. to Static him in translt tis at wheh ax. ocewrs

"mNZ 5

3F3CT Co M MTXO
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6G,

v Static Max ~i stat mx. DIP

o - 8.33 - 9.17 1.10 3.25 -2.08 -2.29 1.10 3.25

01 - 7.96 - 8.69 1.09 3.12 -2.o6 -2.24 1.09 3.12

.2 - 7..2 - 8.08 1.09 3.00 -2.02 -2.20 1.09 3.00

.25 - 7.08 - 7.7. 1.09 2.88 -2.01 -2.19 1.09 2.88

.4 - 5.76 - 6.75 1.17 3.12 -1.91 -2.22 1.16 3.25

O"ib go1 8 G.,,,(Qo. Ugo,

Static V. l to tic max .  MY t

0 .61 .69 1.14 3.25 - .A. - .47 1.13 3.00

.1 .56 .63 1.13 3.25 - .40 - .44 1.12 2.88

.2 .19 .55 1.12 3.25 - .37 - .Al 1.11 2.88

.25 .45 .50 1.11 3.25 - .35 - .39 1.11 2.88

.4 .27 .31 1.14 3.75 - .29 - .33 1.15 3.88

0 -.1033 -11..8 1.11 3.25 6.oo 6.94 1.16 3.38

.1 - 9.88 -10.90 1.10 3.12 5.31 6.8 1.14 3.38

.2 - 9.12 -10.03 1.10 3.00 4.40 4.98 1.13 3.38

.25 - 8.61 - 9.50 1.10 3.00 3.85 4.33 1.13 3.50

.16 - 6.51 - 7.61 1.16 3.50 1.77 1.97 1.11 4.38

*patlo of Mkx. to Static #TI tM La t t&M es at vich Max. occurs

TAMA 6

cryW or POISSw'8 RATIO
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